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Topological currents for arbitrary chiral groups in three space 
dimensions 

C J Isham 
Blackett Laboratory, Physics Department, Imperial College, London SW7 2BZ, UK 

Received 7 April 1977 

Abstract. It is shown that the homotopy classes of soliton-type solutions to chiral field 
theories in three space dimensions are determined entirely by cohomological properties. 
This result is employed to construct topological currents which are identically conserved and 
whose integrated time component contains all the homotopical information. 

1. Introduction 

An important ingredient in much of the recent work on solitons and instantons is the 
classification of solutions to field equations in terms of homotopy classes. In the present 
paper we are concerned with situations where the third homotopy group of a differenti- 
able manifold M is involved. This may be regarded as the group of homotopy classes of 
smooth maps from the three-sphere Y 3  into M. There are at least three cases where this 
arises. 

(i) Consider solutions to the classical Yang-Mills equations in four dimensions 
(‘Euclideanised’ space-time). If these solutions are required to possess a total action 
which is finite then the fields F,,, must vanish at large distances. More precisely if a 
three-sphere of radius R is constructed around the origin of coordinates, we require the 
field F,,, to tend to zero faster than Re3”. One way of ensuring this is to force the 
Yang-Mills potential A, to be pure gauge at the three-sphere boundary of four- 
dimensional Euclidean space. Thus on this boundary 

A, = g-’(x)d,g(x) (1.1) 

for some function g mapping this sphere into the gauge group G. Such functions can be 
classified into homotopy classes, with G playing the role of the differential manifold A4 
(Belavin et a f  1975). 

(ii) Consider again solutions to the Yang-Mills equations but concentrate now on 
spatially localised gauge transformations. Such transformations are generated by 
functions g from physical three-space R3 into the gauge group, which become the 
identity group element e at spatial infinity. This means that the whole two-sphere 
boundary of R3 is identified to a single point and mapped into e and such maps are 
precisely equivalent to functions from a three-sphere into G (Jackiw and Rebbi 1976). 

(iii) Finally suppose we are interested in classical solutions to theories involving 
non-linear realisations of some compact group X acting on a manifold M. Such theories 
were popular ten years ago with 3iC being a chiral group such as SU(2) x SU(2) or 
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SU(3) x SU(3) and have been re-investigated recently from a soliton viewpoint (Honer- 
kamp et a1 1976, Duff and Isham 1976, 1977, Deser et a1 1976, Barnes et a1 1977, 
Nicole 1977). The manifold M is parametrised by a set of fields 4’ . . .q5“ (n = dim M )  
which possess a non-linear transformation under X induced by the group action on M. 
The Lagrangian is typically 

2= i g i j ( 4 )  dWdi r3J (1.2) 
with gij  being a X-invariant metric on M. If finite energy solutions to the static field 
equations are required then d i  must become a constant at spatial infinity. Thus once 
again the boundary of R 3  is identified to a point and the possibility arises of classifying 
solutions according to the homotopy class of maps from the three-sphere into M. Such a 
situation can also arise with Higgs-Kibble fields in Yang-Mills gauge theory, the 
manifold M labelling the different possible vacuum states (Coleman 1975). 

Clearly an essential requirement for the use of these homotopical concepts is the 
ability to actually compute the homotopy class to which the function of interest 
belongs. Most of the previous work on this problem has been in the situation where M 
is itself a sphere, Typically a two-sphere Y2 for models in two space dimensions and a 
three-sphere Y3  for theories in three space dimensions. (Maps from Y3  into Y2 have 
also been investigated (Hertel 1977).) Such maps may be labelled by their degree (an 
integer) and the theory is well developed (Arafune et a1 1975). However for general 
manifolds M the problem is more complicated and forms the subject matter of this 
paper. I am mainly concerned with case (iii) above (the non-linear chiral models) 
although many of the results are of general applicability. If X is a chiral group, G X G 
say, then M is normally chosen to be the coset space G X GIGa where GA is the 
diagonal subgroup of G x G. This quotient space is diffeomorphic to G so we are really 
concerned with constructively classifying elements of the third homotopy group II3(G) 
of the Lie group G. It is a standard result that for most simple groups l13(G) = Z (the 
integers, see § 4 for details) and hence in analogue with previous results the aim is to find 
‘topological current’ NW on four-dimensional space-time which is identically conserved 
(i.e. independent of any equation of motion), chirally invariant and with the property 
that the integral of Ju” over any space-like surface is the integer labelling the homotopy 
class. The conservation of N” and the identification of the boundary of R 3  to a point 
guarantees that this number is independent of the space-like hypersurface chosen, even 
for time-dependent solutions to the field equations. It is also desirable to construct 
lower bounds on the energy of a static solution in terms of this topological ‘charge’. 
Such bounds are considered in § 3 and can provide a powerful proof of the stability 
under small disturbances. This is an essential property if quantum corrections are to be 
considered (Duff and Isham 1977). 

The crucial observation is that within the context of differential geometry the 
quantities (like N o )  that can be integrated are differential forms. This in turn suggests 
that it may be profitable to recast the problem in terms of cohomology theory. This is 
done in § 2 where an explicit algorithm for constructing the desired topological currents 
is presented. In general it is easier to construct cohomology groups than homotopy 
groups and correspondingly in many respects the former carry less information than the 
latter. An essential feature of the present situation is that for maps into a Lie group G 
the cohomological information is the same as that obtained from homotopy theory. 
Strictly speaking this result is necessary to fully justify the use of the topological currents 
constructed in § 2. However the derivation is rather technical, using a string of known 
topological properties of Lie groups, and is deferred until the final section of the paper. 
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2. Topological currents for an arbitrary chiral group 

Consider a continuous map f from Y 3  into the compact simple Lie group G. This 
induces homomorphisms from the real (singular) homology and cohomology groups 
(Greenberg 1967, Spanier 1966): 

H"(G; R)+H"(Y3;  R) f*:  
f * :  Hf l (Y3;  R)+H,(G; R) 

n=O, 1 , 2  , . . . .  

Let f and h be two such maps. Then a basic theorem of algebraic topology states that i f f  
and h are homotopic (denoted f - h )  then f* = h ,  a n d p  = h*.  We are interested in the 
converse, in particular when does f* = h* imply that f - h ?  If G were itself a 
three-sphere (i.e. if G = SU(2)) then the Brouwer degree theorem (Spanier 1966) 
shows that this converse does hold and, as demonstrated in P 4, this remains true for 
many compact Lie groups G. Now H"(Y3;  R ) =  0 unless n = 3 when H3(Y3;  R ) = R  
(using augmented groups so that @(Y3; R)=O). Thus in order to investigate the 
homotopic properties of a map f :  Y 3  + G it suffices to investigate the induced map f* 
from H 3 ( G ;  R )  into H3(Y3;  R ) =  R. Using De Rham's theorem (Goldberg 1962) 
H3(G;  R )  may be identified with the space of closed differential three-forms on the 
differentiable manifold G modulo exact three-forms. The general theory of Lie group 
cohomology tells us that (Goldberg 1962) 

H'(G;  R)=H*(G;  R ) = O  (2.3) 

H3(G; R)= R (2.4) 
and that the group H3(G;  R)is  generated by a three-form invariant under left and right 
multiplication of G by itself. To construct such a form recall that the Lie algebra of G 
may be identified with a set of left-invariant vector fields on G, X,, U = 1 , , . dim G, 
satisfying the commutation relations 

(2.5) 
where CabC are a set of real structure constants. If {M' . . . M", m =dim G }  is a local 
coordinate system on G (physically they are ultimately the fields in the theory) then Xa 
has the components 6' ( M )  i.e. Xa = t i  (d/aMi) and equation (2.5) implies 

[xa, xb 1 = CabC xc 

a a 

In the theory of non-linear realisations of the chiral group X = G x G the 5' appear as 

coefficients in the 'infinitesimal' transformation SM' with left-chiral group parameters 
a 

4 l . .  . 4": 

Let {w"} denote the set of one-forms dual to {Xa}. In components 
n 
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These forms satisfy the Cartan-Maurer structure equations (which are equivalent to 
(2.5)): 

d w a = - '  zc a bc W b  h w c  (2.10) 

where A and d denote the exterior product and derivative respectively. Now consider 
the three-form 

T = C a b c W a  I\ W b  A wc 

= - 2 w a ~ d w a  (from (2.10)) 
a 

- 25itj.k dM' A dM' A d M k .  
a 

(2.11) 

(2.12) 

(Note that it is assumed that the basis {Xa}  for the Lie algebra of G has been chosen so 
that the Cartan-Killing form is simply the Kronecker delta. This is being used to raise 
and lower the indices a, b, c . )  

Clearly T is a G-invariant form, it is closed (dr = 0) by virtue of the Jacobi identities 
and in fact (Goldberg 1962) it generates H3(G;  R ) .  Now suppose that f :  Y3+ G is a 
solution to the static field equations. Thenf"r is a three-form on Y3 given explicitly by 

a b aM'(x) aM'(x) aMk (x) f" 7 = C a b c t i t k k T  - ~ dx' A dxs A dx' 
ax axs ax' 

(2.13) 

where { x r } ,  r = 1 , 2 , 3 ,  are a set of coordinates on R 3  (with boundary identification) and 
M'(x)means the functionsM' 0 f:  Y 3  -+ R. If the 'left-chiral currents' Jar are defined by 

aM' 
Jar E ti- 

a ax' 
a, i = 1 . . . m ;  r = 1 , 2 , 3  (2.14) 

(2.15) 

For the simple Lagrangian in equation (1.2) the invariant metric is 
a a  

g.. 11 = 5.6, I I (2.16) 

and Jar really are the spatial components of the Noether currents associated with the 
left-chiral group invariance. However as shown in Deser et a1 (1976) and Fadeev 
(1977) a simple Derrick-theorem-type of argument implies that the Lagrangian in (1.2) 
generates no non-trivial, finite energy, static solutions in three space dimensions. There 
are more complicated higher-derivative Lagrangians which do lead to such solutions 
but Jar will no longer be the associated Noether currents. 

We may summarise the results so far by saying that two solutions f, h to the static 
field equations will be homotopic if and only if the three-forms f * r  and h*r are 
cohomologous. This in turn is true if and only if the three-forms differ by a divergence, 
which may be easily checked by integration. Thusf and h are homotopic if and only if 

CabCJarJbsJCrErsr d3x = CabCJLr JLsJ: r~rSf  d3x (2.17) 

where Jar and Jh, are the currents produced by f and h respectively. 
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A topological current associated with this construction may be obtained in the 
following way (Fadeev 1977). Let $: Y3 X R + G be a time-dependent function. Then 
$*r is a three-form on Y 3  x R and 

(2.18) $"r = cabJ"a  Jbp J', dx" A dx' A dxY 

with 

a = 0, 1, 2, 3. 
a aMi 

ax J"a = t i 7  

Let X denote the one-form dual to $ * T :  

X =  * $*r = X M  dxM 

where 

NM = CabJaa Jbp Jcy E n P v f i .  

Then d7 = 0 implies that 

(2.19) 

(2.20) 

(2.21) 

aMXM = o (2.22) 

(2.23) 

Since in addition XM is G-invariant this is evidently the topological current being 
sought. One anticipates that there will be some renormalised version of X o  with the 
property that N o  d3x is actually an integer, presumably related to the corresponding 
member of the third homotopy group. This is discussed in 5 4. 

3. Energy bounds 

Energy bounds on classical static solutions of the form 

energy > ltopological chargel (3.1) 

are very useful, In particular if a classical solution saturates (3.1) (i.e. the equality holds) 
then for any sufficiently small perturbation the energy can only increase. This is 
because such a perturbation cannot change the topological charge (which is assumed to 
be an i n t e g e r 4 4 )  and the result implies in particular that the static solution really is at 
a minimum rather than a maximum of the potential. Without this topological tool such 
stability can only be verified by solving the small-disturbance equation-a task which in 
practice can be extremely difficult (Duff and Isham 1977). 

Bounds of the type in (3.1) can obviously be obtained by spatially integrating 
inequalities of the form 

energy density > lXol. (3.2) 

To proceed any further we clearly need to know what energy density is being employed 
or, equivalently, the form of the Lagrangian. The most general chiral invariant 
Lagrangian can be expressed as an algebraic function of the currents Jaw with the 
space-time indices being saturated with the Minkowski metric or eMua8 and the internal 
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labels by the Kronecker delta, structure constants or other covariants (such as dabc in 
SU(3)) .  Typical examples might be 

2’ = Ja,Jaw ( 3 . 3 )  

2’ = .nabcC~Jb,J~JcyJe’,  ( 3 . 4 )  

or 

The Lagrangian in equation (1.2) is in fact proportional to (3 .3 )  whilst ( 3 . 4 )  contains 
four powers of field derivatives. As mentioned already, something like ( 3 . 4 )  is 
necessary in three space dimensions if stable finite energy solutions are to exist. Since 

No = cabJ:J!J:E ‘sf ( 3 . 5 )  
one obvious useful inequality is (Fadeev 1977) 

(Jar-AC,b‘Jb,JC,Es‘)’2O (3 .6 )  
where the square of the bracket means summing over a = 1 ,  . . . , m and r = 1 , 2 , 3  and 
where A is any real number. Expanding (3 .6 )  gives 

Ja,Jar + 2A ’ C ~ C a d e J b s J ~ J c r J e ‘  2 2AN0. (3 .7 )  

Either sign for A may be chosen and its modulus varied at will either to optimise the 
bound or to make the left-hand side equal a specific Hamiltonian density. 

Another possibility is 

(Jar Jbs - pCCabE ‘rs Jcr )’ 2 O ( 3 . 8 )  

(JarJar)’+4p2JarJar 3 2pN0 ( 3 . 9 )  

which implies 

where again p can be freely chosen. Linear combinations of (3 .7 )  and ( 3 . 9 )  may also be 
employed if this is appropriate for the Lagrangian under consideration. 

Finally 

(JarJbsJcr -ECabcErsr)’* 0 (3 .10 )  

which implies 

( J a r J a r ) 3 2 - 1 2 m ~ ’ + 2 ~ N 0 .  ( 3 . 1 1 )  

It is assumed throughout that the structure constants have been normalised so that 

As it stands the left-hand side of (3 .11 )  involves six derivatives. The bound is 
cabc Cdbc = 2s:.  

unlikely to be useful in this form although it might conceivably be helpful in the form 

( 3 . 1 2 )  

since, as was pointed out in Deser et a1 (1976) ,  the somewhat exotic Lagrangian 

(3 .13 )  

avoids the Derrick scaling arguments in three space dimensions. (Of course the integral 
of the square root on the right-hand side is not equal to the square root of the integral!) 

For any given group one can attempt to find solutions to the field equations which 
saturate these inequalities. In the case, for example, of (3 .6 )  this involves finding a 
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solution for which 

J,, = A ~ a b C  J~~ J ~ ~ E , S ' .  (3.14) 

This is reminiscent of the self-duality equations in the theory of Yang-Mills instantons. 
Equations (3.14) are first-order partial differential equations for M ' ( x )  and are hence in 
principle easier to solve than the second-order equations of motion, which for arbitrary 
T ( J )  are 

(3.15) 

However, unlike the analogous Yang-Mills case, it is by no means obvious that a 
solution of (3.14) will automatically satisfy (3.15) or indeed that there are any functions 
at all that satisfy both (3.14) and (3.15) simultaneously. This is a problem for further 
research. 

4. Cohomological and homotopical equivalence 

We now consider the problem of the equivalence between the cohomological and 
homotopical properties of a solution. It will be necessary in this section to be more 
precise in the use of mathematical language. Let E 3  denote the closed ball in R3;  
E3 = {x E R3(x  . x G l}. This ball has a boundary Y2  and its interior is a homeomorphic 
image of the space upon which the static solutions are defined. Such a solution f maps 
the boundary to some point p o  E G and we write f as a map between pairs: 

f :  (E3 ,  Y2)+ (G, PO) .  (4.1) 
Consider integral relative homology and cohomology groups. Then f induces the 
homomorphisms 

f": H3(G, p o ;  Z)+H3(E3 ,  Y2; Z) (4.2) 

f*: H3(E3, Y2; Z)+H3(G, P O ;  Z) (4.3) 
and the question of interest is: 'If f l  and f2 are two such maps with f:' = fz,  are f l  and f2 
homotopic?' The answer is as follows. 

Proposition 1. Let f l  andf2 be two continuous maps from the pair (E3,  9") into (G, p o )  
where G is one of the compact, simply connected, classical simple Lie groups. Then 
f ?  = f i  implies that f l  and f2 are homotopic. 

Proof. (i) Let L be the canonical generator (Spannier 1966) of H3(E3, Y2;  Z) = Z and let 
h : = fi* -f2* and k : = fT -e. Denote the pairing between a cochain c and chain z by 
(c, z )  and let a :  H3(G, p o ;  Z)+H3(G, p o ;  Z)* be the canonical homomorphism (Green- 
berg 1967) between the cohomology group and the dual of the homology group defined 
by 

Then for all [c] E H3(G, P O ;  Z), a ( [ c ] ) ( h ( ~ ) ) =  (c, h ( ~ ) )  = (kc,  L )  = 0 since by assumption 
k = f T  -ft = 0. However since E is a principal ideal domain a is an epimorphism and 
therefore h ( ~ )  is annihilated by all members of H3(G, p o ;  Z)*. Thus h ( ~ )  belongs to the 
torsion subgroup of H,(G, P O ;  E) .  

a([cl>(Izl)= (c, 2) for all [c] E H3(G, P O ;  Z), [ z ]  E H3(G, PO; Z). 



1404 C J Isham 

(ii) We would like to show that this torsion subgroup vanishes so that h(L) = 0. The 
previously quoted results on Lie group cohomology involve real coefficients (being 
concerned with invariant differential forms) and tell us only that the rank of 
H3(G, p o ;  E) is one. We will prove the desired result using a method which has the 
virtue of introducing some results that will be necessary later. 

The n th absolute homotopy group of G may be defined (Spanier 1966, Sze-Tsen Hu 
1959) as the set of homotopy classes of maps from (E”, 9”’-’) into (G, PO) and denoted 
ll ,(G, P O ) .  Strictly speaking there is a different group for each point p o  E G. However 
since G is a topological group there is a natural isomorphism (Steenrod 195 1) between 
these different homotopy groups and we shall usually simply write I’I,(G). (In particu- 
lar f l  and f2 belong to the same class in IT3(G,po) if and only if they are freely 
homotopic.) Let f: (E3, Y2)+ (G, po).  Then there is a natural homomorphism (Spanier 
1966, Sze-Tsen Hu 1959) 

4 :  n3(G, P O ) +  H3(G, P O ;  H) 
Lfl-f*b 1 (4.4) 

where [f] denotes the homotopy class of f and L is the canonical generator of 
H3(E3, 9’’; Z) referred to above. Now since G is assumed simply connected, l l l (G)  = 
0. Furthermore for any compact Lie group l12(G) = 0. The fundamental Hurewicz 
theorem (Spanier 1966) then states that 4 is an isomorphism. The third homotopy 
groups of the classical simple Lie groups are well known (Husemoller 1966): 

rI,(SU(n))=Z n 2 2  (4.5) 

rI3(Sp(n )) = Z n > l  (4.6) 

ll,(Spin(n)>= Z n 2 5 (4.7) 

where Spin (n) is the universal covering group of SO(n), and hence in all these cases 
H3(G, P O ;  Z) is isomorphic to the integers. (For the semi-simple group Spin(4), 
&(Spin(4))= ZOE.) 

(iii) In particular there is no torsion subgroup of H3(G, PO; E )  and hence h ( L )  = 0. 
Under the homomorphism 4, VI] - Lf2] is mapped onto f l * ( b ) - f 2 * ( ~ ) =  h(L) = 0. Hence 
using the Hurewicz isomorphism theorem again it follows that [fl] = Lf2]. Thus f l  - f2 

which is the desired result. 

The point P O  plays no real role in the above result. Indeed as already indicated it can be 
omitted in the homotopy theory. Since H3(G, P O ;  Z)=H3(G; H) and H3(G, P O ;  E ) ;  
H4G; Z) the statement in proposition 1 remains true if fl  and f 2  map the boundary 9’ 
into two different points and if fi* are regarded as homomorphisms between H3(G; Z) 
and H3(E3,  9’’; Z). 

Let us now return to the problem of normalising the topological current constructed 
in 0 2. 

Proposin‘on 2 .  Using the notation of § 2 j 9 3  f * ~ ’  is an integer M for some suitably 
normalised three-form 7’ = ro7, ro E R. 

Proof. f should properly be regarded as map from (E3,  9’) into (G, po). There is a 
natural projection map p :  (E3,  Y2)+(Y3,  x o )  in which the boundary Y2 of E3 is 
identified to a point xo. This induces isomorphisms between the various homology and 
cohomology groups and hence f can be regarded as generating a homomorphism (also 
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denoted f") between H3(G; Z) and H3(Y3;  Z). The three-form T is a generator of the 
group H3(G; R )  which by virtue of the universal coefficient theorem (Greenberg 1967, 
Spanier 1966) is isomorphic to R O H 3 ( G ;  Z). Hence there exists some real number ro 
such that roT is a generator for the free group H3(G;Z)-E.  Now choose some 
orientation of Y 3  and let r be the associated generator of H3(Y3;  72)- E. There will 
exist some generator e E H3(Y3;  Z) = Z such that (a(e))(r) = 1. Then f * ( r o T )  must be 
some integral multiple of this generator: f k ( r o T )  = Me, M E  E. Now view these objects 
as elements of real cohomology groups. In the De Rham theorem the pairing between a 
cocycle and cycle is obtained by integrating the cocycle (now a closed differential form) 
over the cycle. Thus 

which, since integrating over r is equivalent to integrating over Y3 with a specified 
orientation, is the required result. 

The final problem is to fix ro. If we could find a generator y for H3(G;  Z) this would 
be sufficient because using De Rham cohomology again 

Since by the Hurewicz theorem n3(G)=H3(G, Z) it suffices to find a generator for 
I13(G). Suppose G = SU(n) for some n 3 3 and consider the following part of the 
homotopy exact sequence (Sze-Tsen Hu 1959, Steenrod 1951, Husemoller 1966) for 
the fibre bundle SU(n) over base space SU(n)/SU(n - 1) with fibre SU(n - I): 

+-n,(sU(n)/SU(n - I))-+II~(su(~ - 1 ) ~ 1 l 3 ( ~ ~ ( n ) ) + - n , ( s u ( n ) / s ~ ( n  - I))+-. . . 

where i denotes the subgroup embedding of SU(n-1) into SU(n) and i* is the 
associated homomorphism of homotopy groups. The quotient space SU(n)/SU(n - 1) 
is diffeomorphic to Yzn-' and l13(Yzn-')- I14(Y2"-1) = 0 for n 3 3. Thus this portion of 
the exact sequence reduces to 

O+-n3(SU(n - I)$II~(su(~))-+o 

and hence i, is an isomorphism. Some isomorphism is of course already implied in the 
tabulated forms of the third homotopy groups in (4.9,  indeed this is partly how the 
results quoted in (4.5) are obtained. The crucial feature for our purposes is that this 
isomorphism is induced by the subgroup embedding. Suppose that G = SU(3). The 
group SU(2) is diffeomorphic to Y3 and hence there is a canonical generator f of 
I13(SU(2)). Then by the result above i,p is a generator for IIs(SU(3)). Now the 
embedding of SU(3) in SU(4) leads to a generator of SU(4) and so on. Thus for any 
sequence SU(2) c SU(3) c SU(4)c . . . SU(n) a generator of II3(SU(n)) is obtained. In 
fact if j :  SU(2)+ SU(n) is the embedding of SU(2) into SU(n) then the homotopy class 
[i] of j can serve as the generator of I&(SU(n))- H3(SU(n); E). Thus in practice ro can 
be determined from (4.8) by integrating the three-form T over the SU(2) subgroup of 
SU(n). It is then clear that the integer M appearing in (4.8) is the same as that 
classifying the element of the homotopy group &(SU(n)). 
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Using a general property of topological groups (Steenrod 1951) the nth homotopy 
class M[j] contains the function 

j M :  SU(2)+ SU(n) 
g - g M  

where g M  really means ( j ( g ) ) M .  Since ( j (g))" lies in the SU(2) subgroup of SU(n) this 
means that any solution to the static field equations is homotopic to a function that lies 
purely in the chosen SU(2) subgroup! Unfortunately there is no reason why this 
function should itself solve the field equations so this procedure does not immediately 
reduce the SU(n) problem to the SU(2) problem (this is an interesting topic for further 
research). 

These results can be readily generalised to the symplectic groups using the 
isomorphisms 

Sp(1) = SU(2) 

Sp(n)/Sp(n - 1)= Pn-l. 
Similarly for the spin groups 

Spin(3)= SU(2) 

Spin(n)/Spin(n - l )=Y" 
and by choosing some embedding of Spin(3) in Spin(5) the same procedure can be 
followed. 

Finally we note that the restriction that G be simply connected may be removed. 
Any non-simply connected Lie group G is isomorphic to the quotient of its simply 
connected covering group U with some subgroup K of its centre. For the classical 
groups under discussion K is always a finite discreet group and the projection p :  U +  
U / K  induces an isomorphism between third homotopy groups (using the exact 
sequence for a bundle). The following map diagram is commutative: 

n3( U I K G H 3  ( U / K  ; B )  

n3kJ) +3(U; Z) 

4 P* 
& 

P* 4 

with the left-hand vertical and lower horizontal arrows being isomorphisms. The 
right-hand vertical map is not an isomorphism since H 3 ( U / K ;  H) may contain a 
torsional subgroup. It is however a monomorphism between H3(U; E )  and the free 
subgroup of H3( U / K ;  E )  and by commutativity the same is true of 

4: n3 ( U/K)+H3 ( U / K  ; H). 
This is sufficient to complete the proof (part (iii)) of proposition 1 and the proof of 
proposition 2 can be adapted in a similar way. 
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